Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Geriatrics (Basel) ; 9(2)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38667510

ABSTRACT

The 2-minutes walking test (2-MWT) is a valid and reliable test that has a high correlation with the distance walked in the 6-minutes walking test (6-MWT). However, to date, no study has determined the relationship between 2-MWT performance and the aerobic fitness indices obtained during a maximal incremental test to confirm if this test is a valid surrogate of aerobic fitness in apparently healthy older adults. The main objective of this work was to identify the factors associated to the performance in the 2-MWT, including aerobic fitness, functional and spatial-temporal gait parameters. Seventeen elderly adults performed a maximal incremental cycling test to determine maximum oxygen consumption (VO2max) and ventilatory thresholds (VT1 and VT2), two static standing balance tests with open and close eyes, a 5-times sit-to-stand test (5-TSTS), a handgrip test, and a 2-MWT on three different days over 2 weeks. No correlations were found between aerobic fitness indices and the distance covered in 2-MWT, but significant moderate correlations were found between the distance covered in 2-MWT and the time to perform the 5-TSTS (rho = -0.49) and with stride length (rho = 0.52) during the test. In conclusion, the 2-MWT does not seem a good test to assess aerobic capacity while it showed to be associated to the 5-TSTS performance of the elderly.

2.
Cell Calcium ; 117: 102819, 2024 01.
Article in English | MEDLINE | ID: mdl-37956535

ABSTRACT

Calcium is a universal intracellular messenger and proper Ca2+concentrations ([Ca2+]) both in the cytosol and in the lumen of cytoplasmic organelles are essential for cell functions. Ca2+ homeostasis is achieved by a delicate pump/leak balance both at the plasma membrane and at the endomembranes, and improper Ca2+ levels result in malfunction and disease. Selective intraorganellar Ca2+measurements are best achieved by using targeted genetically encoded Ca2+ indicators (GECIs) but to calibrate the luminal fluorescent signals into accurate [Ca2+] is challenging, especially in vivo, due to the difficulty to normalize and calibrate the fluorescent signal in various tissues or conditions. We report here a procedure to calibrate the ratiometric signal of GAP (GFP-Aequorin Protein) targeted to the endo-sarcoplasmic reticulum (ER/SR) into [Ca2+]ER/SR based on imaging of fluorescence after heating the tissue at 50-52 °C, since this value coincides with that obtained in the absence of Ca2+ (Rmin). Knowledge of the dynamic range (Rmax/Rmin) and the Ca2+-affinity (KD) of the indicator permits calculation of [Ca2+] by applying a simple algorithm. We have validated this procedure in vitro using several cell types (HeLa, HEK 293T and mouse astrocytes), as well as in vivo in Drosophila. Moreover, this methodology is applicable to other low Ca2+ affinity green and red GECIs.


Subject(s)
Aequorin , Organelles , Mice , Animals , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Calibration , Organelles/metabolism , Aequorin/metabolism , Sarcoplasmic Reticulum/metabolism , Calcium/metabolism , Calcium Signaling
3.
Cell Death Dis ; 14(10): 692, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37863914

ABSTRACT

Transforming growth factor ß (TGFß) pathway is a master regulator of cell proliferation, differentiation, and death. Deregulation of TGFß signalling is well established in several human diseases including autoimmune disorders and cancer. Thus, understanding molecular pathways governing TGFß signalling may help better understand the underlying causes of some of those conditions. Here, we show that a HECT domain E3 ubiquitin ligase TRIP12 controls TGFß signalling in multiple models. Interestingly, TRIP12 control of TGFß signalling is completely independent of its E3 ubiquitin ligase activity. Instead, TRIP12 recruits SMURF2 to SMAD4, which is most likely responsible for inhibitory monoubiquitination of SMAD4, since SMAD4 monoubiquitination and its interaction with SMURF2 were dramatically downregulated in TRIP12-/- cells. Additionally, genetic inhibition of TRIP12 in human and murine cells leads to robust activation of TGFß signalling which was rescued by re-introducing wildtype TRIP12 or a catalytically inactive C1959A mutant. Importantly, TRIP12 control of TGFß signalling is evolutionary conserved. Indeed, genetic inhibition of Drosophila TRIP12 orthologue, ctrip, in gut leads to a reduced number of intestinal stem cells which was compensated by the increase in differentiated enteroendocrine cells. These effects were completely normalised in Drosophila strain where ctrip was co-inhibited together with Drosophila SMAD4 orthologue, Medea. Similarly, in murine 3D intestinal organoids, CRISPR/Cas9 mediated genetic targeting of Trip12 enhances TGFß mediated proliferation arrest and cell death. Finally, CRISPR/Cas9 mediated genetic targeting of TRIP12 in MDA-MB-231 breast cancer cells enhances the TGFß induced migratory capacity of these cells which was rescued to the wildtype level by re-introducing wildtype TRIP12. Our work establishes TRIP12 as an evolutionary conserved modulator of TGFß signalling in health and disease.


Subject(s)
Carrier Proteins , Transforming Growth Factor beta , Animals , Humans , Mice , Carrier Proteins/metabolism , Drosophila/metabolism , Transforming Growth Factor beta/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
4.
Free Radic Biol Med ; 198: 92-108, 2023 03.
Article in English | MEDLINE | ID: mdl-36764627

ABSTRACT

Cancer cells are characterised by an elevated metabolic plasticity and enhanced production of reactive oxygen species (ROS), two features acknowledged as hallmarks in cancer, with a high translational potential to the therapeutic setting. These aspects, that have been traditionally studied separately, are in fact intimately intermingled. As part of their transforming activity, some oncogenes stimulate rewiring of metabolic processes, whilst simultaneously promoting increased production of intracellular ROS. In this scenario the latest discoveries suggest the relevance of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) to connect ROS production and metabolic control. Here we have analysed the relevance of NOX2 and NOX4 in the regulation of metabolism in chronic myeloid leukaemia (CML), a neoplasia driven by the expression of the breakpoint cluster region-Abelson fusion oncogene (BCR-ABL). Silencing of NOX2 enhances glycolysis and oxidative phosphorylation rates, together with an enhanced production of mitochondrial ROS and a decrease in mitochondrial DNA copy number, which reflects mitochondrial dysfunction. NOX4 expression was upregulated upon NOX2 silencing, and this was required to alter mitochondrial function. Our results support the relevance of NOX2 to regulate metabolism-related signalling pathways downstream of BCR-ABL. Overall we show that NOX2, through the regulation of NOX4 expression, controls metabolism and mitochondrial function in CML cells. This notion was confirmed by transcriptomic analyses, that strongly relate both NOX isoforms with metabolism regulation in CML.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Leukemia, Myeloid , Humans , Reactive Oxygen Species/metabolism , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidases/metabolism , Mitochondria/metabolism
5.
Dev Dyn ; 251(5): 877-884, 2022 05.
Article in English | MEDLINE | ID: mdl-34719815

ABSTRACT

BACKGROUND: Fibroblast growth factors (Fgfs) are required for survival and organ formation during embryogenesis. Fgfs often execute their functions redundantly. Previous analysis of Fgf3 mutants revealed effects on inner ear formation and embryonic survival with incomplete penetrance. RESULTS: Here, we show that presence of a neomycin resistance gene (neo) replacing the Fgf3 coding region leads to reduced survival during embryogenesis and an increased penetrance of inner ear defects. Fgf3neo/neo mutants showed reduced expression of Fgf4, which is positioned in close proximity to the Fgf3 locus in the mouse genome. Conditional inactivation of Fgf4 during inner ear development on a Fgf3 null background using Fgf3/4 cis mice revealed a redundant requirement between these Fgfs during otic placode induction. In contrast, inactivation of Fgf3 and Fgf4 in the pharyngeal region where both Fgfs are also co-expressed using a Foxg1-Cre driver did not affect development of the pharyngeal arches. However, these mutants showed reduced perinatal survival. CONCLUSIONS: These results highlight the importance of Fgf signaling during development. In particular, different members of the Fgf family act redundantly to guarantee inner ear formation and embryonic survival.


Subject(s)
Ear, Inner , Fibroblast Growth Factors , Animals , Ectoderm/metabolism , Female , Fibroblast Growth Factor 3/genetics , Fibroblast Growth Factor 3/metabolism , Fibroblast Growth Factor 4 , Fibroblast Growth Factors/metabolism , Forkhead Transcription Factors/genetics , Mice , Multigene Family , Nerve Tissue Proteins/genetics , Pregnancy
6.
Cell Metab ; 33(9): 1820-1835.e9, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34343501

ABSTRACT

Appropriate cristae remodeling is a determinant of mitochondrial function and bioenergetics and thus represents a crucial process for cellular metabolic adaptations. Here, we show that mitochondrial cristae architecture and expression of the master cristae-remodeling protein OPA1 in proopiomelanocortin (POMC) neurons, which are key metabolic sensors implicated in energy balance control, is affected by fluctuations in nutrient availability. Genetic inactivation of OPA1 in POMC neurons causes dramatic alterations in cristae topology, mitochondrial Ca2+ handling, reduction in alpha-melanocyte stimulating hormone (α-MSH) in target areas, hyperphagia, and attenuated white adipose tissue (WAT) lipolysis resulting in obesity. Pharmacological blockade of mitochondrial Ca2+ influx restores α-MSH and the lipolytic program, while improving the metabolic defects of mutant mice. Chemogenetic manipulation of POMC neurons confirms a role in lipolysis control. Our results unveil a novel axis that connects OPA1 in POMC neurons with mitochondrial cristae, Ca2+ homeostasis, and WAT lipolysis in the regulation of energy balance.


Subject(s)
Lipolysis , Pro-Opiomelanocortin , Adipose Tissue/metabolism , Animals , GTP Phosphohydrolases , Homeostasis , Mice , Neurons/metabolism , Pro-Opiomelanocortin/metabolism
7.
Front Cell Dev Biol ; 9: 679325, 2021.
Article in English | MEDLINE | ID: mdl-34124068

ABSTRACT

Meis genes have been shown to control essential processes during development of the central and peripheral nervous system. Here we have explored the roles of the Meis2 gene during vertebrate inner ear induction and the formation of the cochlea. Meis2 is expressed in several tissues required for inner ear induction and in non-sensory tissue of the cochlear duct. Global inactivation of Meis2 in the mouse leads to a severely reduced size of the otic vesicle. Tissue-specific knock outs of Meis2 reveal that its expression in the hindbrain is essential for otic vesicle formation. Inactivation of Meis2 in the inner ear itself leads to an aberrant coiling of the cochlear duct. By analyzing transcriptomes obtained from Meis2 mutants and ChIPseq analysis of an otic cell line, we define candidate target genes for Meis2 which may be directly or indirectly involved in cochlear morphogenesis. Taken together, these data show that Meis2 is essential for inner ear formation and provide an entry point to unveil the network underlying proper coiling of the cochlear duct.

8.
Sensors (Basel) ; 20(23)2020 Nov 29.
Article in English | MEDLINE | ID: mdl-33260462

ABSTRACT

A preliminary analysis of Galileo F/NAV broadcast Clock and Ephemeris is performed in this paper with 43 months of data. Using consolidated Galileo Receiver Independent Exchange (RINEX) navigation files, automated navigation data monitoring is applied from 1 January 2017 to 31 July 2020 to detect and verify potential faults in the satellite broadcast navigation data. Based on these observation results, the Galileo Signal-in-Space is assessed, and the probability of satellite failure is estimated. The Galileo nominal ranging accuracy is also characterized. Results for GPS satellites are included in the paper to compare Galileo performances with a consolidated constellation. Although this study is limited by the short observation period available, the analysis over the last three-year window shows promising results with Psat = 3.2 × 10-6/sat, which is below the value of 1 × 10-5 stated by the Galileo commitments.

9.
Pflugers Arch ; 472(4): 439-448, 2020 04.
Article in English | MEDLINE | ID: mdl-32246199

ABSTRACT

Excitability in astroglia is controlled by Ca2+ fluxes from intracellular organelles, mostly from the endoplasmic reticulum (ER). Astrocytic ER possesses inositol 1,4,5-trisphosphate receptors (InsP3R) that can be activated upon stimulation through a vast number of metabotropic G-protein-coupled receptors. By contrast, the role of Ca2+-gated Ca2+ release channels is less explored in astroglia. Here we address this process by monitoring Ca2+ dynamics directly in the cytosol and the ER of astroglial cells. Cultured astrocytes exhibited spontaneous and high-K-evoked cytosolic Ca2+ transients, both of them reversibly abolished by external Ca2+ removal, addition of plasma membrane channel blockers or ER Ca2+ depletion with SERCA inhibitors. Resting astrocyte [Ca2+]ER averaged 400 µM and maximal stimulation with ATP provoked a complete and reversible ER discharge. Direct monitoring of Ca2+ in the lumen of ER showed that high-K induced a Ca2+ release from the ER, and its amplitude was proportional to the [K]. Furthermore, by combining the low affinity GAP3 indicator targeted to the ER with the high affinity cytosolic Rhod-2, we simultaneously imaged ER- and cytosolic-Ca2+ signals, in astrocytes in culture and in situ. Plasma membrane Ca2+ entry triggered a fast ER Ca2+ release coordinated with an increase in cytosolic Ca2+. Thus, we identify a Ca2+-induced Ca2+-release (CICR) mechanism that is likely to participate in spontaneous astroglial oscillations, providing a graded amplification of the cytosolic Ca2+ signal.


Subject(s)
Astrocytes/metabolism , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Calcium Signaling/physiology , Cell Membrane/metabolism , Cytosol/metabolism , Mice, Inbred C57BL
10.
J Cell Sci ; 133(6)2020 03 19.
Article in English | MEDLINE | ID: mdl-32005702

ABSTRACT

Sarcopenia, the loss of muscle mass and strength associated with age, has been linked to impairment of the cytosolic Ca2+ peak that triggers muscle contraction, but mechanistic details remain unknown. Here we explore the hypothesis that a reduction in sarcoplasmic reticulum (SR) Ca2+ concentration ([Ca2+]SR) is at the origin of this loss of Ca2+ homeostasis. We engineered Drosophila melanogaster to express the Ca2+ indicator GAP3 targeted to muscle SR, and we developed a new method to calibrate the signal into [Ca2+]SRin vivo [Ca2+]SR fell with age from ∼600 µM to 50 µM in close correlation with muscle function, which declined monotonically when [Ca2+]SR was <400 µM. [Ca2+]SR results from the pump-leak steady state at the SR membrane. However, changes in expression of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump and of the ryanodine receptor leak were too modest to explain the large changes seen in [Ca2+]SR Instead, these changes are compatible with increased leakiness through the ryanodine receptor as the main determinant of the [Ca2+]SR decline in aging muscle. In contrast, there were no changes in endoplasmic reticulum [Ca2+] with age in brain neurons.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Calcium , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Sarcoplasmic Reticulum , Animals , Calcium/metabolism , Drosophila/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
11.
Sensors (Basel) ; 20(1)2020 Jan 03.
Article in English | MEDLINE | ID: mdl-31947838

ABSTRACT

The present contribution evaluates how the European Geostationary Navigation Overlay System (EGNOS) meets the International Maritime Organization (IMO) requirements established in its Resolution A.1046 for navigation in harbor entrances, harbor approaches, and coastal waters: 99.8% of signal availability, 99.8% of service availability, 99.97% of service continuity and 10 m of horizontal accuracy. The data campaign comprises two years of data, from 1 May 2016 to 30 April 2018 (i.e., 730 days), involving 108 permanent stations located within 20 km of the coast or in islands across the EGNOS coverage area, EGNOS corrections, and cleansed GPS broadcast navigation data files. We used the GNSS Laboratory Tool Suite (gLAB) to compute the reference coordinates of the stations, the EGNOS solution, as well as the EGNOS service maps. Our results show a signal availability of 99.999%, a horizontal accuracy of 0.91 m at the 95th percentile, and the regions where the IMO requirements on service availability and service continuity are met. In light of the results presented in the paper, the authors suggest the revision of the assumptions made in the EGNOS Maritime Service against those made in EGNOS for civil aviation; in particular, the use of the EGNOS Message Type 10.

12.
Front Endocrinol (Lausanne) ; 11: 615777, 2020.
Article in English | MEDLINE | ID: mdl-33664709

ABSTRACT

The adenohypophysis contains five secretory cell types (somatotrophs, lactotrophs, thyrotrophs, corticotrophs, and gonadotrophs), each secreting a different hormone, and controlled by different hypothalamic releasing hormones (HRHs). Exocytic secretion is regulated by cytosolic Ca2+ signals ([Ca2+]C), which can be generated either by Ca2+ entry through the plasma membrane and/or by Ca2+ release from the endoplasmic reticulum (ER). In addition, Ca2+ entry signals can eventually be amplified by ER release via calcium-induced calcium release (CICR). We have investigated the contribution of ER Ca2+ release to the action of physiological agonists in pituitary gland. Changes of [Ca2+] in the ER ([Ca2+]ER) were measured with the genetically encoded low-affinity Ca2+ sensor GAP3 targeted to the ER. We used a transgenic mouse strain that expressed erGAP3 driven by a ubiquitous promoter. Virtually all the pituitary cells were positive for the sensor. In order to mimick the physiological environment, intact pituitary glands or acute slices from the transgenic mouse were used to image [Ca2+]ER. [Ca2+]C was measured simultaneously with Rhod-2. Luteinizing hormone-releasing hormone (LHRH) or thyrotropin releasing hormone (TRH), two agonists known to elicit intracellular Ca2+ mobilization, provoked robust decreases of [Ca2+]ER and concomitant rises of [Ca2+]C. A smaller fraction of cells responded to thyrotropin releasing hormone (TRH). By contrast, depolarization with high K+ triggered a rise of [Ca2+]C without a decrease of [Ca2+]ER, indicating that the calcium-induced calcium-release (CICR) via ryanodine receptor amplification mechanism is not present in these cells. Our results show the potential of transgenic ER Ca2+ indicators as novel tools to explore intraorganellar Ca2+ dynamics in pituitary gland in situ.


Subject(s)
Calcium/metabolism , Endoplasmic Reticulum/metabolism , Molecular Imaging/methods , Pituitary Gland/cytology , Pituitary Gland/metabolism , Animals , Calcium Signaling/physiology , Female , Male , Mice , Mice, Transgenic , Organ Culture Techniques
13.
FEBS J ; 287(9): 1798-1815, 2020 05.
Article in English | MEDLINE | ID: mdl-31652486

ABSTRACT

Rapid plasma membrane repair in response to pore-forming toxins is crucial for cell survival, but the molecular mechanisms employed by eukaryotic nucleated cells to maintain membrane integrity and the specificities of such pathways remain poorly understood. Here, we have explored the permeabilization elicited by the Bordetella pertussis adenylate cyclase toxin, a 200-kDa protein toxin with α-helical pore-forming domain that forms pores of tunable size, and evaluated the response of target macrophages to such toxin poration. We show here that the response and the fate of target macrophages depend on toxin pore width. We find that the toxin's hemolysin moiety induces a transient membrane permeabilization by forming wide enough pores allowing Ca2+ influx into the target cell cytosol. This activates a Ca2+ -dependent cellular response involving exocytosis and endocytosis steps eliminating toxin pores and restoring membrane integrity. In contrast, the full-length native toxin, at low concentrations, forms very small pores that cause insidious perturbation of cell ion homeostasis that escapes control by the macrophage membrane repair response, eventually leading to cell death. Our data reveal that permeability to Ca2+ and ATP are key elements in the membrane repair pathway for eliminating α-helical pores of bacterial origin.


Subject(s)
Adenylate Cyclase Toxin/pharmacology , Bordetella pertussis/chemistry , Cell Membrane/drug effects , Hemolysin Proteins/metabolism , Macrophages/drug effects , Animals , Cell Membrane/metabolism , Cell Membrane Permeability/drug effects , Cells, Cultured , Macrophages/metabolism , Mice
14.
Biochem J ; 475(22): 3639-3649, 2018 11 28.
Article in English | MEDLINE | ID: mdl-30389846

ABSTRACT

Cytosolic Ca2+ signals are often amplified by massive calcium release from the endoplasmic reticulum (ER). This calcium-induced calcium release (CICR) occurs by activation of an ER Ca2+ channel, the ryanodine receptor (RyR), which is facilitated by both cytosolic- and ER Ca2+ levels. Caffeine sensitizes RyR to Ca2+ and promotes ER Ca2+ release at basal cytosolic Ca2+ levels. This outcome is frequently used as a readout for the presence of CICR. By monitoring ER luminal Ca2+ with the low-affinity genetic Ca2+ probe erGAP3, we find here that application of 50 mM caffeine rapidly reduces the Ca2+ content of the ER in HeLa cells by ∼50%. Interestingly, this apparent ER Ca2+ release does not go along with the expected cytosolic Ca2+ increase. These results can be explained by Ca2+ chelation by caffeine inside the ER. Ca2+-overloaded mitochondria also display a drop of the matrix Ca2+ concentration upon caffeine addition. In contrast, in the cytosol, with a low free Ca2+ concentration (10-7 M), no chelation is observed. Expression of RyR3 sensitizes the responses to caffeine with effects both in the ER (increase in Ca2+ release) and in the cytosol (increase in Ca2+ peak) at low caffeine concentrations (0.3-1 mM) that have no effects in control cells. Our results illustrate the fact that simultaneous monitoring of both cytosolic- and ER Ca2+ are necessary to understand the action of caffeine and raise concerns against the use of high concentrations of caffeine as a readout of the presence of CICR.


Subject(s)
Caffeine/pharmacology , Calcium/metabolism , Cytosol/drug effects , Endoplasmic Reticulum/drug effects , Central Nervous System Stimulants/pharmacology , Cytosol/metabolism , Dose-Response Relationship, Drug , Endoplasmic Reticulum/metabolism , HeLa Cells , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism
15.
Sci Rep ; 7(1): 10260, 2017 08 31.
Article in English | MEDLINE | ID: mdl-28860523

ABSTRACT

Signal transduction in sensory neurons of the mammalian vomeronasal organ (VNO) involves the opening of the canonical transient receptor potential channel Trpc2, a Ca2+-permeable cation channel that is activated by diacylglycerol and inhibited by Ca2+-calmodulin. There has been a long-standing debate about the extent to which the second messenger inositol 1,4,5-trisphosphate (InsP3) and type 3 InsP3 receptor (InsP3R3) are involved in the opening of Trpc2 channels and in sensory activation of the VNO. To address this question, we investigated VNO function of mice carrying a knockout mutation in the Itpr3 locus causing a loss of InsP3R3. We established a new method to monitor Ca2+ in the endoplasmic reticulum of vomeronasal sensory neurons (VSNs) by employing the GFP-aequorin protein sensor erGAP2. We also performed simultaneous InsP3 photorelease and Ca2+ monitoring experiments, and analysed Ca2+ dynamics, sensory currents, and action potential or field potential responses in InsP3R3-deficient VSNs. Disruption of Itpr3 abolished or minimized the Ca2+ transients evoked by photoactivated InsP3, but there was virtually no effect on sensory activation of VSNs. Therefore, InsP3R3 is dispensable for primary chemoelectrical transduction in mouse VNO. We conclude that InsP3R3 is not required for gating of Trpc2 in VSNs.


Subject(s)
Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Mammals , Sensation , Vomeronasal Organ/physiology , Action Potentials , Animals , Calcium/metabolism , Calcium Signaling , Calmodulin/metabolism , Evoked Potentials , Extracellular Space/metabolism , Gene Expression , Intracellular Space/metabolism , Ligands , Mice , Molecular Imaging , Photolysis , Sensory Receptor Cells/physiology , Signal Transduction
16.
Methods Mol Biol ; 1567: 245-253, 2017.
Article in English | MEDLINE | ID: mdl-28276023

ABSTRACT

Mitochondrial Ca2+ homeostasis is crucial for regulating vital functions such as respiration or apoptosis. Targeted aequorins are excellent probes to measure subcellular Ca2+. Ca2+ concentration in mitochondria ([Ca2+]M) is low at rest (about 10-7 M) and can increase to the micromolar or even approach the millimolar range, upon cell activation. Here we describe a new quantitative luminescent protocol to directly measure mitochondrial Ca2+ uptake, optimized for high throughput. The sensitivity of the method allows detection of changes in either the capacity or the affinity of mitochondrial Ca2+ transport.


Subject(s)
Calcium/metabolism , Luminescent Measurements/methods , Mitochondria/metabolism , Aequorin/metabolism , Calcium Channels/metabolism , HeLa Cells , Humans , Luminescent Measurements/instrumentation , Statistics as Topic
17.
Cell Calcium ; 64: 3-11, 2017 06.
Article in English | MEDLINE | ID: mdl-28214023

ABSTRACT

Aequorins are excellent tools for measuring intra-organellar Ca2+ and assessing its role in physiological and pathological functions. Here we review targeting strategies to express aequorins in various organelles. We address critical topics such as probe affinity tuning as well as normalization and calibration of the signal. We also focus on bioluminescent Ca2+ imaging in nucleus or mitochondria of living cells. Finally, recent advances with a new chimeric GFP-aequorin protein (GAP), which can be used either as luminescent or fluorescent Ca2+ probe, are presented. GAP is robustly expressed in transgenic flies and mice, where it has proven to be a suitable Ca2+ indicator for monitoring physiological Ca2+ signaling ex vivo and in vivo.


Subject(s)
Aequorin/metabolism , Calcium/metabolism , Intracellular Space/metabolism , Molecular Probes/metabolism , Organelles/metabolism , Animals , Fluorescent Dyes/metabolism
18.
Biochim Biophys Acta Mol Cell Res ; 1864(6): 894-899, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27939433

ABSTRACT

GFP-Aequorin Protein (GAP) can be used to measure [Ca2+] inside intracellular organelles, both by luminescence and by fluorescence. The low-affinity variant GAP3 is adequate for ratiometric imaging in the endoplasmic reticulum and Golgi apparatus, and it can be combined with conventional synthetic indicators for simultaneous measurements of cytosolic Ca2+. GAP is bioorthogonal as it does not have mammalian homologues, and it is robust and functionally expressed in transgenic flies and mice, where it can be used for Ca2+ measurements ex vivo and in vivo to explore animal models of health and disease. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.


Subject(s)
Aequorin/metabolism , Calcium/metabolism , Organelles/metabolism , Animals , Diptera , Green Fluorescent Proteins/metabolism , Humans , Luminescence , Mice , Mice, Transgenic
19.
Cell Cycle ; 15(20): 2753-65, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27579997

ABSTRACT

The SREBP transcription factors are major regulators of lipid metabolism. Disturbances in lipid metabolism are at the core of several health issues facing modern society, including cardiovascular disease, obesity and diabetes. In addition, the role of lipid metabolism in cancer cell growth is receiving increased attention. Transcriptionally active SREBP molecules are unstable and rapidly degraded in a phosphorylation-dependent manner by Fbw7, a ubiquitin ligase that targets several cell cycle regulatory proteins for degradation. We have previously demonstrated that active SREBP1 is stabilized during mitosis. We have now delineated the mechanisms involved in the stabilization of SREBP1 in mitotic cells. This process is initiated by the phosphorylation of a specific serine residue in nuclear SREBP1 by the mitotic kinase Cdk1. The phosphorylation of this residue creates a docking site for a separate mitotic kinase, Plk1. Plk1 interacts with nuclear SREBP1 in mitotic cells and phosphorylates a number of residues in the C-terminal domain of the protein, including a threonine residue in close proximity of the Fbw7 docking site in SREBP1. The phosphorylation of these residues by Plk1 blocks the interaction between SREBP1 and Fbw7 and attenuates the Fbw7-dependent degradation of nuclear SREBP1 during cell division. Inactivation of SREBP1 results in a mitotic defect, suggesting that SREBP1 could regulate cell division. We propose that the mitotic phosphorylation and stabilization of nuclear SREBP1 during cell division provides a link between lipid metabolism and cell proliferation. Thus, the current study provides additional support for the emerging hypothesis that SREBP-dependent lipid metabolism may be important for cell growth.


Subject(s)
Cell Nucleus/metabolism , Lipid Metabolism , Mitosis , Sterol Regulatory Element Binding Protein 1/metabolism , Cell Cycle Proteins/metabolism , Cell Proliferation , F-Box Proteins/metabolism , F-Box-WD Repeat-Containing Protein 7 , HCT116 Cells , HEK293 Cells , HeLa Cells , Humans , Phosphorylation , Protein Binding , Protein Domains , Protein Serine-Threonine Kinases/metabolism , Protein Stability , Proteolysis , Proto-Oncogene Proteins/metabolism , Sterol Regulatory Element Binding Protein 1/chemistry , Transcription, Genetic , Ubiquitin-Protein Ligases/metabolism , Polo-Like Kinase 1
20.
Cell Chem Biol ; 23(6): 738-45, 2016 06 23.
Article in English | MEDLINE | ID: mdl-27291400

ABSTRACT

Proper functioning of organelles such as the ER or the Golgi apparatus requires luminal accumulation of Ca(2+) at high concentrations. Here we describe a ratiometric low-affinity Ca(2+) sensor of the GFP-aequorin protein (GAP) family optimized for measurements in high-Ca(2+) concentration environments. Transgenic animals expressing the ER-targeted sensor allowed monitoring of Ca(2+) signals inside the organelle. The use of the sensor was demonstrated under three experimental paradigms: (1) ER Ca(2+) oscillations in cultured astrocytes, (2) ex vivo functional mapping of cholinergic receptors triggering ER Ca(2+) release in acute hippocampal slices from transgenic mice, and (3) in vivo sarcoplasmic reticulum Ca(2+) dynamics in the muscle of transgenic flies. Our results provide proof of the suitability of the new biosensors to monitor Ca(2+) dynamics inside intracellular organelles under physiological conditions and open an avenue to explore complex Ca(2+) signaling in animal models of health and disease.


Subject(s)
Aequorin/analysis , Calcium/analysis , Calcium/metabolism , Green Fluorescent Proteins/analysis , Organelles/metabolism , Aequorin/chemistry , Aequorin/genetics , Aequorin/metabolism , Animals , Drosophila melanogaster , Endoplasmic Reticulum/chemistry , Endoplasmic Reticulum/metabolism , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Imaging , Organelles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...